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Efficient synthesis of 4-O- and C-substituted-7-azaindoles
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Abstract—6-Chloro-4-nitro- and 4,6-dichloro-1H-pyrrolo[2,3-b]pyridine are versatile building blocks that allow the synthesis of
4-substituted 7-azaindole derivatives by simple nucleophilic displacement of the 4-substituent. Herein, we report on their reaction
with phenolates and activated methylene nucleophiles.
� 2006 Elsevier Ltd. All rights reserved.
7-Azaindole is an indole surrogate of increasing interest
in medicinal chemistry. It has been used as an indole
bioisostere to improve physicochemical and pharmaco-
kinetic properties of several drug candidates.1 It is also
an emerging pharmacophore in ATP competitive kinase
inhibitors as it contains the typical motif (H-bond donor
and acceptor in 1,3-position) to dock into the adenine
binding pocket.2,3

The regioselective functionalization of the pyridine ring
of 7-azaindole remains a major challenge, although
some progress has been achieved starting from the
N-oxide derivative,4 and more recently using the Hemets-
berger–Knittel reaction.5 In the course of an ongoing
research program, we required a general and efficient
synthesis of 4-O-aryl-1H-pyrrolo-[2,3-b]pyridines, which
to the best of our knowledge was unprecedented.

To permit a wide optimization program, we envisaged
the synthesis of an activated 7-azaindole building block
that could be substituted with phenols. 4-Chloro,
4-nitro, and 4-bromo-1H-pyrrolo[2,3-b]pyridine6 proved
to be inert when heated with 4-amino-2-fluorophenol in
the presence of KOt-Bu. The corresponding N-oxides
also did not afford any substitution product when re-
acted with 4-amino-fluorophenol under the same condi-
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tions.7 The palladium or copper catalyzed coupling
between either 4-chloro8 or 4-bromo-1H-pyrrolo[2,3-b]-
pyridine4 and 4-N-protected-amino-2-fluorophenol
also failed to afford an acceptable yield of the
diarylether.9

Encouraged by the fact that 2,4-dichloropyridine readily
undergoes nucleophilic substitution selectively at the
4-position,10 we decided to use the corresponding 4,6-di-
chloro-1H-pyrrolo[2,3-b]pyridine (3a) as the acceptor.
Compound 3a was prepared following a published pro-
cedure (Scheme 1).11 When heated overnight at 80 �C
with 4-amino-2-fluorophenol and K2CO3 in DMSO,
3a was completely converted to arylether 5. Neverthe-
less, after a tedious workup of the tar-like reaction mix-
ture and further chromatography, we isolated 5 in a 16%
yield. Modification of the reaction conditions (KOt-Bu,
DMF, 100 �C) did not significantly improve the isolated
yield of diarylether 5.

Relative to 2,4-dichloropyridine, the position 4 of com-
pound 3a should be less electrophilic due to the electron-
donating effect of the fused pyrrole ring. Therefore, we
reasoned that a more electron withdrawing leaving
group would render the 4-position more electrophilic,
thus accelerating the aromatic nucleophilic substitution.
In fact, the reaction of the 6-chloro-4-nitro analogue 3b,
which was prepared by chlorination12 of the known
4-nitro-1H-pyrrolo[2,3-b]pyridine-N-oxide (2),13 with
4-amino-2-fluorophenol was complete after 2 h. However,
the isolated yield of 5 (29%) was not satisfying, and the
difficult workup did not allow for an increase in scale. It
is noteworthy that the 6-substitution product could not
be detected in the reaction mixture.
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Scheme 1. Reagents and conditions: (i) Cl3CCOCl, (Me3Si)2NH, THF, 1 h; (ii) 4-amino-2-fluorphenol, K2CO3, DMSO, 100 �C, 2 h; (iii) SEMCl,
NaH, THF, 1 h; (iv) H2, 10% Pd/C, EtOH, rt, 24 h; (v) TFA 50% in DCM, 2 h; (vi) AcONa, EtOH, 1 h.
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To avoid possible side reactions associated with the par-
tial deprotonation of the pyrrolic nitrogen under the
reaction conditions, we decided to examine the reaction
using a protecting group for this position. 1-[2-(Trimeth-
ylsilyl)ethoxy]methyl group (SEM) proved to be the best
choice among the available indole-protecting groups. To
our delight, the SEM-protected 6-chloro-4-nitro-1H-
pyrrolo[2,3-b]pyridine (4b) reacted with 4-amino-2-fluo-
Table 1.
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rophenol to afford diarylether 6 in 88% yield. The
4-chloro analogue 4a gave comparable yields as well.14

As can be seen in Table 1, the reaction yields correlate
with the nucleophilicity of the reacting phenolate. Only
phenols of very low nucleophilicity like methyl salicylate
do not give any product (entry 5). In general, the 4-nitro
derivative 4b produced better yields than the 4-chloro
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Table 1 (continued)
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analogue 4a, when phenols carrying electron withdraw-
ing groups were used (entries 4 and 5).

Moreover, we found that when using a suitable carbon
nucleophile, it was also possible to make carbon
analogues of compound 6. Consequently, the 4-nitro
derivative 4b reacted with the sodium salt of methyl
2-(4-nitro-2-fluorophenyl)acetate (entry 7) to produce
the 4-benzyl-derivative 15 in 93% yield.15 Surprisingly,
the reaction did not proceed with the 4-chloro-analogue
4a (entry 6).

Compound 6 was cleanly converted into 7 by a hydro-
genolytic removal of the chlorine atom (Scheme 1).
The SEM group was cleaved in reasonable yield follow-
ing a two-step procedure. First, treatment of compound
7 with 50% trifluoroacetic acid in dichloromethane at
room temperature for 2 h afforded an equimolar mixture
of hemiaminal 8 and deprotected compound 9. This
mixture was then quantitatively converted to 9 after stir-
ring it for 1 h with sodium acetate in ethanol. After col-
umn chromatography, the target compound 916 could be
isolated in 79% yield. This route was performed on a
100 g scale.
In summary, we have developed a straightforward syn-
thetic strategy that permits access to novel 4-substituted
7-azaindole derivatives, using a nucleophilic aromatic
substitution as the key step.
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